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Two-dimensional incompressible Navier-Stokes equations aie solved using SIMPLER 

method in the intunsic curvilinear coordinates system to sttidy the unsteady viscous flow physics 

ovei two-dimensional ellipses Unsteady viscous flows over various thickness-to-chord ratios of 

0 6, 0 8, 10, and 1 2 elliptic cylinders are simulated at diffeient Reynolds numbeis of 200, 400, 

and 1,000 This study is focused on the undeistanding the effects of Reynolds numbci and elliptic 

cylinder thickness on the diag and lift forces The present numerical solutions are compaied with 

available expeiimental and numerical results and show a good agieement Through this study, 

ft IS observed that the Reynolds number and the cylinder thickness affect significantly the 

frequencies of the force oscillations as well as the mean values and the amplitudes of the drag 

and lift foices 

Key Words : Unsteady Viscous Flow, Vortex Shedding, SIMPLER Method, Elliptic Cylinder, 

Naviei-Stokes Equations 

1. Introduction 

The earliest recorded observation of the pheno­

menon of vortex shedding can be traced back to 

the sixteenth century when Leonardo da Vinci 

made drawings of surface pattern of the flusd flow 

past an obstacle (Perry et a l , 19S2) 

A wake flow behind a bluff body is very sig­

nificant flow phenomena in the engineeiing field 

The alternate voitex shedding occuned m the 

near wake behind a bluff body leads to periodi­

cally oscillating drag and lift foices Especially 

the oscillating lilt foice, whose direction is trans-
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verse to the flow, is laige and may cause structui-

al vibrations, acoustic noise, oi resonance, which 

m some cases can tiigger failuie (Williamson, 

!996) 

Many researcher have studied steady/unsteady 

flows past over circular cylinders Paik et al 

(I99S) repotted detailed information of flow 

quantities on the cylinder surface at low Reynolds 

numbers up to 160 A detailed study of the wake 

structures and flow dynamics associated with 

simulated two-dimensional flows past a circular 

cylinder that is either stationaiy or in simple har­

monic cross-flow oscillation is done by Black-

bum and Henderson (1999) Jordan and Fromm 

(1972) investigated oscillatory drag, lift, and tor­

que on a circular cylinder in a uniform flow at 

Reynolds numbers of 100. 400, and 1.000 by 

solving voiticity-stream function formulation 

They showed the dramatic rise of the drag co­

efficient duiing the development of the Karman 

voitex street Manzari (2003) piesented a finite 
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element solution procedure for the simulation 

of transient incompressible fluid flows using tri­

angular meshes His algorithm is based on the 

artificial compressibility technique in connection 

with a dual time-stepping approach A higher-

order immersed boundary method was applied 

to the two-dimensional unsteady incompressible 

Navier-Stokes equations in vorticity-stream func­

tion formulation to solve unsteady incompressible 

flow by LinnicJr and Fasel (2003) 

Besides the basic study or development of nu­

merical algorithm to solve flows past circular 

cylinders, some researchers have tried to control 

the vortex shedding Kang and Choi (1999) in­

vestigated two-dimensional laminar flow past a 

circular cylinder rotating with a constant angular 

velocity for the purpose of controlling vortex 

shedding and understanding the underlying flow 

mechanism Also, Park et al.(1994) studied the 

feedback control of von Karman vortex shedding 

behind a circular cylinder at low Reynolds num­

bers numerically 

Actually, many studies have been accomplished 

for flows past circular cylinders because of geo­

metric simplicity However, it would be valuable 

attempts to study the flows past elliptic cylinders 

Engineering applications often involve flows over 

complex bodies like wings, submarines, missiles, 

and rotor blades, which can hardly be modeled as 

a flow over a circular cylinder In such flows, 

cylinder thickness and angle of attack can greatly 

influence the nature of separation and the wake 

structure (Mittal and Balachandar, 1996) 

In 1987, Ota et al (1987) investigated a flow 

around an elliptic cyhnder of axis ratio 1 3 in the 

critical Reynolds number regime, which extends 

from about /?e=85,000 to 312,000, on the basis 

of mean static pressure measurements along the 

cylinder surface and of hot-wire velocity mea­

surements m the near wake Nair and Sengupta 

(1996) solved Navier-Stokes equations m order 

to study the onset of computed asymmetry around 

elliptic cylinders at a Reynolds number of 10,000 

They found that the ellipses developed asym­

metry much earlier than the circular cylinder 

Patel (1981), Chou & Huang (l996), Nair & 

Sengupta (1997), D'Alessio et al.(l999), and 

Badr et al (2001) solved unsteady Navier-Stokes 

equations expressed in terms of stream function 

and vorticity formulations to study the flows past 

elliptic cylinders for different angles of attack 

in the range of Reynolds numbers from 100 to 

40,000 

The objective of the present research is to stu­

dy the effects of elliptic cylinder thickness and 

Reynolds numbers on the unsteady flow physics 

concentrating on the drag and lift forces exerted 

on the body Unsteady viscous flows over various 

thickness-to-chord ratios of 0 6, 0 8, 1 0, and 1 2 

elliptic cylinders are simulated at different Rey­

nolds numbers of 200, 400, and 1,000 by solving 

unsteady form of incompressible Navier-Stokes 

equations, which is written m two-dimensional 

body intrinsic orthogonal curvilinear coordinate 

system 

For the temporal integration, Crank-Nicolson 

scheme IS used Patankar (1980) showed that the 

power law scheme ideally fits for all the Peclet 

numbers, so power law scheme is used for spatial 

discretization 

Current techniques for the solution of incom­

pressible viscous flow can be categorized as vor-

ticity-stream function methods, artificial com­

pressibility methods, and projection methods The 

projection method is a fractional step method 

in which an intermediate velocity and pressure 

are calculated The SIMPLE (Patankar 1980, 

Patankar and Spalding 1972) method and all 

related SIMPLE methods fall in this category In 

this paper, the discretized equations are solved 

using a segregated approach where the discretized 

equation for each variable is solved sequentially 

using SIMPLER method (Patankar, 1980) 

2. Governing Equations 

2.1 Navier-Stokes equations 
For the present analysis, the flowfield is as­

sumed to be a two-dimensional unsteady, incom­

pressible, laminar flow The coordinate system is 

taken to be a two-dimensional, body-mtrinsic, 

orthogonal curvilinear coordinate system shown 

in Fig 1 wherein the ^-direction is taken to be 

along the body while the j?-direction is perpen-
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Fig. 1 Two-dimensional body-intrinsic coordinate 
system 

dicular to the body surface. With these assump­

tions, continuity and momentum equations can be 

expressed as follows (detailed derivation can be 

ibund in Lim 1991); 

Continuiy Equation 

Here, h\ is scale Factor in the .^-direction. The 

first term can be dropped for incompressible flow 

but it is retained here for convenience. 

;;;-MQmentuin Equation 

5 , , , \ d I I 

dVe 

dt^p'^^^tii{p 

1 , .dhi \ dp 

+-
U„ dill \ I / _L ^Vji_— "f ^hL\ ^ 

(2) 

f^-Momentum Equation 

d f ^ , 1 3 1 dvii 

I , .dki dp 

. fi \ 3 I Vn dhy\lf\_dut^ ih_3hy\ 3hi 

(3) 

dh\ \ Bhi 

detailed derivations of the following discretizcd 

governing equations can be found in Senguta 

(2003). 

(4) 

Continuity Equation 

+ {\^a) (F i i , -F»4 , +FL-4-FS.-i 1 =0 

where 

Fu^l^dtipv,),-,i+iA^, Fu-^= Uhpv,)u-^Ai 

Here, superscript "0" represents the variable 

quantity at the old time step. The value of a — 

0.5 corresponds to the Crank-Nicolson time inte­

gration scheme and a ^ l . O corresponds to the 

fully implicit scheme. In this study, Crank-Ni­

colson scheme was chosen. 

yf —Momentum Equation 

= (ffS„,+ (1 - a) S%,) ijhAri+ {pi-i.j-p.j) hAri 

where 

(5) 

1 dj.>i 
M^rl^'f y Jv,s=[pVfVr 

Ou- " 
1 , , dh\ , u \ d / Vr, dhl \ 

\ In dv I 

+ 
dvn Vt dhl \ Shi 

hi d§ hi Bri I dr} 

2.2 Discretization of governing equations 
The surface and time integration of the gover­

ning equations over the control volume can be 

done term by term and expressed as follows in the 

intrinsic curvilinear coordinate system. All the where 

tf^-Momenlum Equation 

{aS^,+ {\-a) Si,)i.jhiAiA7i+ ipij-i'PulIhA^ 

6) 
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Jv,„ = yhtpv^Vy-hiU^^)^S 

_\_5vj__ Vr, dki \ dki 
hi di hi dr] } dj] . 

3. Flow Solver 
Development and Verification 

The solution algorithm used in the present 

work is based on the SIMPLER algorithm de­

veloped by Patankar ( 1980) in conjunction with 

Crank-Nicolson time integration method. 

The flow geometry along with the boundary 

conditions is shown in Fig. 2 a . The outer boun-

(bt Cell diagram \\ith a cyclic faoundar> in 
(a) Flow geometry and boundary conditions direction 

Fig. 2 Flow geometry and computiitional domain 

Table 1 Comparisons with available numerical and experimental data lA/c=1.0) 

Re 

200 

400 

1,000 

Note ; 

Contributor 

present 

Rogers, K.wak (t) 

Belov (t) 

Linnick, Fasel (2003) 

Berger* (1972) 

present 

Jordan, Fromm (1972) 

Gerrard* ( t t ) 

present 

Goldstein* ( t t t ) 

Jordan, Fromm (1972) 

Gerrard" ( t t ) 

Roshko* (tttt) 
. (*) denotes experimental results 

St 

0.186 

0.185 

0.193 

0.197 

0.18-0.19 

0.204 

0.200 

0.219 

0.220 

0.206 

0.210 

2. ( 

'Cd 

1.12 

1.23 

1.19 

1.34 

1,07 

1.23 

1.04 

1.00 

i.24 

•) in Lin 

ACd 

0.03 

A C / Cpb 

0.54 - 0 . 7 8 

0.05 0.65 

0.04 0.64 

0.04 0.69 

0.05 0.72 -0 .91 

0.07 0.75 -1.01 

-0.85 

0.08 0.88 - 1 . 0 7 

0.12 0.95 -1 .15 

-0 .7S 

nick and Fasel 2003) 

AOt 
0.09 

o.r 
0.16 

0.2" 

0.30 

3. (tt) ill Jordan and Fromin (1972) 
5. ( t t t t ) in Mittal and Balachandar (1996) 

4. ( t t t ) in Chou and Huang 1996) 
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dary of the coniputuiional domain has 30 limes 

of unit chord length distance from the center of 

an elliptic cylinder. Here, the chord is defined as 

a straight line connecting the leading edge and 

trailing edge of the cylinder. The no-slip boun­

dary conditions are iinposed on the solid surface 

and the free stream conditions arc applied to the 

intlow boundary conditions. The outflow boun­

dary conditions are extrapolated from the interior 

grid point values. 

A cyclic boundary condition is implemented 

to see the unsteady flow physics. A diagram for 

cyclic boundary i.s presented in Fig. 2{b). The 

domain extends I'rom cell ibl to ie\ with cell 

ib overlapping with eel! iei and cell ie overlap­

ping with cell ib[. Therefore, throughout all the 

geometry calculations, all geometry parameters 

needs to be copied from ib\ to ie and from /e[ 

to lb. The 0-mesh shaped 148 X 151 grid is gen­

erated algebraically. 

Not many studies have been performed in the 

area of unsteady flow past elliptic cylinders. So, 

the How solver verification was done by com­

paring the present numerical .solutions with cur­

rently available numerical and experimental data 

for a flow passed a circular cylinder. Table 1 

summarii^es this comparison result and shows a 

good agreement. 

4. Numerical 

Results and Discussions 

When vortex shedding occurs alternately be­

hind a circular cylinder, a periodic and asym­

metric flow pattern is formed. The periodic forces, 

therefore, act on the circular cylinder in the free 

stream direction (drag) and normal direction to 

the free stream (lift). The drag and lift forces 

exerted on the cylinder may be decomposed into 

pressure force and friction force components as 

follows : 

Cd=Cdp+Cdf. Cl = Clp^Clf 

Here, Cdp and Cdf &rz the pressure and friction 

components of the drag coefficient, and Clp and 

Clf are the pressure and friction components of 

the lift coefficient, respectively. 

Figure 3 shows typical time variations of CI 

and Cd as a function of T for the circular cy­

linder at i?£' = 200, Here, the lift and drag coefTt-

cients, CI and Cd, are defined respectively as 

Cl=lL/{puid) atid Cd^lD/ipuld), where 
L, D, and d are the lift force per unit span, drag 

force per unit span, and the cylinder diameter, 

respectively. Also, the dimensionlcss time T is 

defined as 7"=—T^ , where I is dimensional 

time. In this figure, oscillating frequencies and 

amplitudes of both coefilcients can be compared 

very clearly. The amplitude of C/ is much greater 

than that of Cd, and the frequency of C! is one-

^VWVWVVWVVWWWV\j 

m\iw\i\/W\PMrj\iW\A 

^ 0.6 -

40 60 

T 
(a) Drag coefficient 

40 60 

T 

(bl Lift coefTicient 

Fig. 3 Time variations of drag und lift coefficients 
for circular cylmder at Re = 200 
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half the frequency of Cd. The frequency of CI 

due to the vortex shedding can be expressed by 

StroLihal number, which is made dimensionless 

with the free stream velocity and the diameter of 

the circular cylinder as follows : 

with increase of Re when ti C is greater than I.O. 

5;̂ - lU: 

where / i s frequency of lift force oscillation. Also. 

Fig. 3 shows that the amplitudes of friction force 

oscillations are much less than (he amplitudes of 

pressure force oscillations for both drag and lift 

forces. 

Figure 4 compares the time-averaged total drag 

coefficient Cd, pressure drag coefficient Cdp. 

and friction drag coefficient Cdf at various thick­

ness-to-chord ratios {t/c} of 0,6, 0.8, 1.0, and 

1.2 ellipses with different Re of 200, 400. and 

1,000 to investigate the effects of ellipse thickness 

and Reynolds number on the drag coefficients. 

The mean drag coefficient Cd increases a lot with 

increase of f /c at the same Re, while it decreases 

as Re increases when t/c is less than 1,0 at the 

same t/C. For t/c= 1.2, Cd is almost constant at 

different Re. The total drag force mostly comes 

from the pressure drag force and the portion of 

pressure drag force increases with increase oi Re 

or t/c as shown in Table 2. The Cdp decreases 

slightly as Re increases when t/c is less than 

1.0 at the same t/c, while it increases slightly 

However, Cdp has a big increase of its magnitude 

as t/c increases for the entire range of Reynolds 

numbers considered in this study. It means that 

Cdp strongly depends on the / c rather than Re. 

This figure also shov\s that the rate of increment 

of Cdp along with increase of t'c is larger when 

Re is larger. 

On the other hand, Cdf decreases as Re 

increases at the same ^ c. while its magnitude is 

an almost same value for the different / c at the 

same Re. It means that Cdf is hardly atTected by 

Tabic 2 The contributing ponion of Cdp and Cdf 
to the Cd 

Re 

200 

400 

t/c 
0.6 

0.8 

1.0 

1.2 

0.6 

O.S 

1.0 

1,2 

0,6 

'Cdp !%) 
b2-\ 

73.4 

80.4 

85.1 

68.5 

79.5 

85.7 

89.4 

76.4 

Cdf (%) 
37.9 

26.6 

19.6 

149 

31.5 

20.5 

14.3 

10.6 

23.6 

Coef. of C J 

0.57 

0.81 

1.12 

1.48 

0.46 

0.-3 

1.07 

I-4-' 

0.3" 

1000 
0.8 

1.0 j 

1.2 ; 

86.2 

90.9 

93.4 

13.8 

9.1 

6.6 

0.66 

1.04 

1,47 

-0.4 

-0.6 

-tJ.b 

-1 

-1 2 

U.. 
A. • • ^ • ^ 

^.^x 

A J!>--P.f 
^ fifii^U, 

\^^^--^ 
\ . \ ^~». 

V \ ^ 

\ \ , 
V 

\ 
\ 

• 

Fig. 4 Cd. Cdp, and Cdf comparisons ai different 
Re and t/c Fig, 5 Cpb versus t/C at dilTereni Re 
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the cylinder thickness taut strongly affected by 

Re. Namely, Cdf strongly depends on Re. 

Time-averaged base pressure coetTicient, Cpb, 

which is defined as a mean value of Cp at the 

trailing edge of the cylinder, is plotted with re­

spect to t/c at different Re in Fig. 5. The abso­

lute value of Cpb increases as either i/c or Re 

increases. Actually, the absolute value of Cpb 

becomes bigger when the wake region becomes 

enlarged because of earlier separation occurrence 

on the elliptic cylinder surface. 

Figure 6 investigates the amplitude of base 

pressure coefficient, /\Cpb, and the amplitude of 

leading edge pressure coefficient, ACps, at vari­

ous with different Re. While Acps is nearly zero 

value no matter what f/c or Re, the ACph 

increases as either t/c or Re increases. Although 

Cp fluctuation at the leading edge is under the 

influence oC Cp fluctuation at the trailing edge, 

the amplitude ACps, which is about the order of 

10"^, is much less than ACpb. 

The amplitudes of CI and Cd oscillations are 

one of the very important physics in unsteady 

flow problem. At the beginning of this section, we 

already mentioned that the amplitude of CI is 

much greater than that of Cd. Fig. 7 investigates 

the amplitude of CI and Cd at different Re and 

t/c. Here, the amplitudes of CI and Cd oscil­

lations are defined, respectively, as 

AC!--

ACd-

{Cl)^,^-(Cl) 

{Cd) mix—iCd) ^ 

where the subscripts min and max denote the 

minimum and maximum values, respectively, in 

a period. Both ACd and ACl increase as Re or 

t/c increases although ACd is much less than 

ACl. 

Figure 8 plots ACl, AC/p. and AC If as a 

function of t/c with different Re, and Fig. 9 

plots ACd, ACdp, and ACdf as a function of 

0.0 

i n jRi-^iavn 

0 0.8 1-0 

Fig. 7 Effects of Re and tc on AC/ and ACd 

0-8 1.0 

//, 
Fig. 6 Effects of Re and t/c on ACpb and 

ACps 

Fig. 8 Effects of Re and t/c on ACl, ACIp, and 
AC If 
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tjc with different Re. The amplitudes of lift and 

drag coefficient due to pressure force arc denoted 

as !S.Clp and b^Cdp, iind the amplitudes of lift 

and drag coefficient due to friction force are 

denoted as i\Clf and IsCdf respectively. Here, 

note that l\Cl^t,Cl!)+l\Clf, l\Cd+t\Cdp\^ 
ixCdf because the maximum amplitudes of force 

oscillations for pressure and friction components 

do not occur simultaneously. It is clear that 

LCl=t\Clp and l\Cd=t^Cdl) because the to­

tal drag force mostly comes from the pressure 

drag force as mentioned already. The A C / , l\Clp. 

0-14 

0.12 

< 0.08 

0.06 

s 

0.00 

. 
-

-
-
" 

-

-

a -

- - • - -
—A 

..A- -
- -k.---

• 
- -•- -

\i,i '/.V-.'f'rJj 

^(•|//i iKi'^Xufi 

j tV/ ; flit=2i)OI 
ACI tlii-'^4{X)i 

2^Citi> ntf^-iinn 
SOl; iKv^-!<H>i 
\0} iRr^hltXh 
^\Cr!jilf!r^/rjfM.tt 

.\Ctlf [Ht'^UKKtt 

/ 
/ 

• 
/ 

/ 
/ 

/ A 
/ 

/ 

/ y 
X / 
^^'' 

- * - — • 
0.£ 1.E 0,8 1,0 

; / , • 

Fig. 9 Erfects of Re and / / r on l\Cd, t\Cdp. and A 
Cdf 

0.30 

0.25 

0.20 

0,1b 

*-

,^-^^^ 

1 

<ht,0.<t_,^ 

ut-fii* 

tlr^iil 

ih-l.2_ 

_,.-,• 

_ _ ^ - i 

^ _ _ ^ _ _ _ — T 

- • 

200 400 aOD BOO 1000 

/ < • ( • 

Fig. 10 Si versos Re at diflereiu f/c 

and !\Clj increase almost linearly with the 

increase of // c for all the ditTerent RQ. howe\er. 

ACdp shows the parabolic increment tendency 

as t; c increases for all the ditTerent Re. 

Figure 10 plots the St &s a function of Re for 

the different t/c. As the Re increases, the vortex 

shedding frequency increases for all ^ c. and the 

rate of increment of frequency along with the 

increase of Re is larger when t c is smaller. The 

frequency is reduced as / r increases at the same 

Re. In other words, the frequency of the vone.v 

shedding is higher when the thickness of elliptic 

cylinder becomes thinner. 

Figsures I i !a: and l i b : show the de\elopment 

U A '̂  '̂  V .'̂  
/fM'r- '• •-

10.0 20.0 &1C 30.0 40 0 M C 

r 
(a) The de\elopmeni of Crf with time for t c=0.8 

1,50 

1 oo 

0,50 

-

^—__ i/,^rif 

i/<=ii fi 

•^^•" 

^ ^ . . , -. r,.,-- -
— ^ - X . ' X ' V -.' V V V •-

. - • 

' • ; ; • . :v . 

\ \ s. .. * . 

fb) The de\elopment of Cd with time at ./?t"=!000 

Fig. 11 The de\elopnieni of Ct/with time 
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of Cd with time for t/c=Qi> at different Re 

and for different t/c at i?e = 1000, respectively 

In tliese figuiei, it is observed that the onset of 

asymmetry is numerically developed fastei when 

the cyhndci thickness becomes thinnei or Rey­

nolds numbei becomes largei 

5. Summary and Conclusion 

Through this study, we found that the total 

drag force is met easing a lot with increase of t/C 

and mostly comes from the pressure drag force 

The contributing poition of the piessure diag 

force IS incicasing more and more as Re or t/c 

IS increasing Also, the results show that the mean 

pressure drag fotce stiongly depends on the 

cylinder thickness, whereas the mean friction drag 

force IS strongly dependent of the Reynolds num­

ber Additionally, it is found that the rate of 

increment of the mean pressuie drag force along 

with the increase of cylinder thickness is taiget 

when the Reynolds number is largei 

The amplitudes of lift and drag force oscil­

lations increase with mciease of Reynolds number 

or cylinder thickness although the amplitude of 

drag force is much less than that of lift force 

While AClp increases almost Imcdrly with the 

increase of t/c for all the different Re, ACdp 

increases parabolically 

Not only the absolute magnitude of the mean 

base pressure but also the amplitude of base pres­

sure oscillation increase as Reynolds number or 

cylinder thickness mcieases Though the Cp fluc­

tuation at the leading edge is influenced by the 

Cp lluctuation at the traihng edge, the fluctua­

ting magnitude at the leading edge is veiy small 

compared with the fluctuating magnitude at the 

trailing edge 

The frequency of vortex shedding mcreases as 

either Reynolds number increases or cylmdei 

thickness decreases, and the late of increment of 

frequency along with the increase of Reynolds 

numtier is largei when the cylinder thickness 

becomes thinner Also, the onset of computed 

asymmetry around the body is developed faster 

when the cylinder thickness becomes thinnei oi 

Reynolds number becomes larger 

Copyright (C) 2005 NuriMedia Co., Ltd. 

Finally, we conclude that the Reynolds number 

and cylindei thickness affect significantly the 

characteiistics of the drag and lift forces mean 

value, fluctuation amplitude, and oscillating fre­

quency 
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